

1

Higgs Searches at the Tevatron: Low mass primary channels

On behalf of CDF and D0 collaborations

Taka Yasuda Fermilab

Outline of Talk

- Introduction
- Standard Model Higgs boson
- B-tagging
- Searches for the SM Higgs boson
 - WH→lvbb
 - ZH→llbb
 - ZH→vvbb,WH→(l)vbb
- Putting all together
- SM Higgs prospects
- Conclusions

Introduction

- Over 8.4 fb⁻¹ delivered and over 7.5 fb⁻¹ recorded per expt by May, 2010.
- Expect ~9 fb⁻¹ by Jun 2010

Tevatron and CDF/D0 both running extremely well

- Higgs mechanism
 - Additional scalar field in SM Lagrangian
 - \rightarrow mass to particles
 - Predicts neutral, spin 0 boson
 - But not its mass
- Direct searches at LEP2
 - *m_H* > 114.4 GeV @95%CL
- Improved m_t & m_w tighten indirect constraints:
 - *m_H* < 157 GeV @ 95%CL (EW fit)
 - Preferred $m_H = 87^{+35}_{-26} \text{ GeV} @ 68\% \text{CL}$

- Small production cross-sections
 - 0.1 –1 pb
- Branching ratio dictates search
- *m_H* < 135 GeV
 - $gg \rightarrow H \rightarrow bb$ overwhelmed by multijet (QCD) background
 - Associated WH & ZH production with H → bb decay
- *m_H* > 135 GeV
 - $gg \rightarrow H \rightarrow WW$

- Higgs searches at a hadron machine challenging
- Backgrounds
 - W/Z+bb, W/Z+cc, W/Z+jets, top, di-boson, multijet
- Requires
 - Efficient triggering, lepton ID, b-tagging, good jet E resolution
 - Sizeable data sets

- Required for low mass $H \rightarrow bb$
 - Improves S/B by > 10
- Take advantage of relatively long lifetime of B-quarks

Neural Net tagger

- Combining
 - Impact Parameter based
 - Secondary Vertex reconstruction
- High efficiency, purity
- Loose = ~50-70% eff, 1-6 % mistag
- Tight = ~40-50% eff, 0.5 % mistag
- Analyse separately ("tight") single & ("loose") double tags

- Advanced analysis techniques to set limits
 - Analyses use multivariate techniques
 - Output from Neural net (NN), Matrix element (ME), Boosted decision tree (BT), or Random Forest as the final discriminant to set the cross section limit
- Regular Tevatron combinations
 - Having two experiments helps.

Sytematics

- As the collected data increases, so does the importance of systematics.
 - Flat systematcis on the final discriminant
 - Luminosity
 - Lepton ID efficiencies
 - Theoretical cross sections
 - Z+HF cross section ~20%
 - Shape dependent systematics on the final discriminant
 - Jet systematics
 - B-tagging systematics
 - Trigger modeling systematics
 - W/Z+jets kinematics modeling
 - W/Z pT
 - Alpgen scale
 - Alpgen-pythia matching scheme
 - PDF

- Higher cross section
 - Use electron and muon channels
- Selection
 - Isolated single lepton, missing E_T (MET), 2 or 3 high p_T jets with 1 or 2 jets b-tagged

WH→Ivbb

Analyses

- Separate 1 "tight" & 2 "loose" b-tag channels
- Apply corrections for jet kinematcal dist.

	Number of b-tagged events		
	CDF(4.8 fb ⁻¹)	D0(5.0 fb ⁻¹)	
Data	5632	6654	
Background	5666	6633	
WH(m _h =115 GeV)	18.6	19.3	

MCTP Higgs 2010

T. Yasuda, Fermilab

WH→Ivbb

- Setting limits
 - 2 Jet and 3 jet events treated separately
 - D0: Neural Net based on kinematical variables
 - CDF: Discriminant based on ME probabilities

- No significant excess
- Cross section limits derived from NN/ME discriminants

For $m_H = 115$ GeV

	Lum	Exp/SM	Obs/SM
D0	5.0 fb ⁻¹	5.1	6.9
CDF	4.8 fb⁻¹	3.8	3.3

CDF Run II Preliminary, L = 4.8 fb⁻¹, 2 and 3 jets

- Cleanest channel, but low cross section x BR
- Selection:
 - 2 Isolated leptons
 - 2 or 3 high p_T jets with 1 or 2 jets btagged

 J_2

I,

- Improving dijet mass resolution
 - Constrain MET within the MC measured distribution to improve jet E resolution

ZH→llbb

- CDF: NN based correction
- D0: Constrained kinematic fit

- Spin-Angular correlation variable
 - Take advantage of difference between
 W/Z+H(→bb) and W/Z+bb(gluon splitting)

Angles in W rest-frame

S. Parke & S Veseli PRD vol. 60, 093003

- Discriminant
 - D0: Boosted Decision Tree
 - CDF: 2-D NN based on flavor separator NN and ME probabilities

	Number of b-tagged events		
	CDF(4.1 fb ⁻¹)	D0(4.2 fb ⁻¹)	
Data	485	332	
Background	448.2	317.3	
ZH(m _h =115 GeV)	2.5	1.2	

ZH→IIbb

Cross section limits

For $m_H = 1$	15 GeV
---------------	--------

Experiment	Lum	Exp/SM	Obs/SM
D0	4.2 fb ⁻¹	8.0	9.1
CDF	4.1 fb ⁻¹	6.8	5.9

CDF Run II Preliminary (4.1 fb⁻¹)

$ZH \rightarrow vvbb, WH \rightarrow (I)vbb$

- Large cross section x BR & acceptance, but hard
 - No visible lepton & only jets
 - Large contribution from WH (~50 %)
- Selection
 - Two jets (not back-to-back: Δφ(j₁,j₂)<165°)

 - MET calculated from calorimeter energy and calculated from tracks

- Background rejection
 - Specialized DT(D0) or NN(CDF) for multijet background rejection

- Limit calculation with advanced analysis technique
 - Specialized DT(D0) or NN(CDF) for SM background rejection
 - Modified frequentist approach(D0) and Bayesian(CDF)

	Number of b-tagged events		
	CDF(3.6 fb ⁻¹)	D0(5.2 fb ⁻¹)	
Data	2787	2226	
Background	2901	2368	
W/ZH (m _h =115 GeV)	12.4	16.5	

 $ZH \rightarrow vvbb, WH \rightarrow (I)vbb$

Cross section limits

For m _H =115 GeV	Experiment	
	DÛ	

Experiment	Lum	Exp/SM	Obs/SM
D0	5.2 fb ⁻¹	4.6	3.7
CDF	3. 6 fb⁻¹	4.2	6.1

- Combine across channels within an experiment
- Combine across experiments

- Improvements in analysis
 - Coping with high luminosity
 - Improved lepton ID using MVA
 - Improved vertexing
 - Expanding acceptance
 - Finding leptons in the detector gaps
 - Electrons between calorimeter gaps
 - Track only muons

- Improved b-tagging (flavor separator)
 - Improved MVA technique
- Jet energy resolution improvement
 - Treat HF jets differently from light jets
- Improved systematics
 - Major source of degradation in sensitivity
 - Need better understanding of W/Z+HF jets properties, including cross sections
- Multivariate techniques (NN, BDT, RF, ...)
- Approaching the SM expectation
 - Rapid improvement well beyond \sqrt{L} gain

SM Higgs Prospects

Summer 2010

- Experiments will report results based on data of ~6 fb⁻¹
- 9 fb⁻¹ will be delivered before 2010 shutdown (July 19)

- Tevatron and CDF/ DØ experiments performing very well
 - Over 8.4fb⁻¹ delivered and 7.5fb⁻¹ recorded.
 - Analysis techniques well-developed.
 - Good understanding on the limiting factors and working on improvements.
 - Well established, common effort across the Collaborations.